If (x,y)→(x+3,y-7) maps TUVW to T'U'V'W', what is the algebraic description that will map T'U'V'W' to TUVW.

Answer:
(B) (x,y)→(x-3,y+7)
Explanation:
If (x,y)→(x+3,y-7) maps TUVW to T'U'V'W'
In order to determine the algebraic description that will map T'U'V'W' to TUVW, we carry out the opposite of the arithmetic functions that mapped TUVW to T'U'V'W'.
[tex]\begin{gathered} TUVW\; to\; T^{\prime}U^{\prime}V^{\prime}W^{\prime}=\mleft(x,y\mright)\to\mleft(x+3,y-7\mright) \\ \text{Therefore:} \\ T^{\prime}U^{\prime}V^{\prime}W^{\prime}\; to\; T^{}UVW=(x,y)\to(x-3,y+7) \end{gathered}[/tex]