Respuesta :

You know that:

- Point R divides PQ in this ratio:

[tex]1\colon3[/tex]

- The x-coordinate of Point R is:

[tex]x_R=-1[/tex]

- The x-coordinate of Point P is:

[tex]x_P=-3[/tex]

Then, you can make this drawing (it is not drawn to scale).

The Internal Section Formula for the x-coordinate of the point that divides the segment is:

[tex]x=\frac{m_{}x_2-nx_1}{m-n}[/tex]

Where the coordinates of the endpoints are:

[tex]\begin{gathered} (x_1,y_1) \\ (x_2,y_2) \end{gathered}[/tex]

And the segment is divided internally in the ratio:

[tex]m\colon n_{}[/tex]

In this case, you can identify that:

[tex]\begin{gathered} x_2=x_P=-3 \\ \\ x=-1 \\ \\ m=1 \\ \\ n=3 \end{gathered}[/tex]

Then, you can substitute values and solve for:

[tex]x_1[/tex]

Which, in this case, is the x-coordinate of Point Q.

Then, you get:

[tex]\begin{gathered} -1=\frac{(1)_{}(-3)_{}-(3)x_1}{1-3} \\ \\ -1=\frac{-3_{}-3x_1}{-2} \end{gathered}[/tex][tex]undefined[/tex]

Ver imagen PeregrinX184927
RELAXING NOICE
Relax