Point Rdivides Poin the ratio 1:3. If the x coordinate of Ris 1 and the x coordinate of Pis-3, what is the x coordinate ofA.13B. 3C. 5D. 6E 9

You know that:
- Point R divides PQ in this ratio:
[tex]1\colon3[/tex]- The x-coordinate of Point R is:
[tex]x_R=-1[/tex]- The x-coordinate of Point P is:
[tex]x_P=-3[/tex]Then, you can make this drawing (it is not drawn to scale).
The Internal Section Formula for the x-coordinate of the point that divides the segment is:
[tex]x=\frac{m_{}x_2-nx_1}{m-n}[/tex]Where the coordinates of the endpoints are:
[tex]\begin{gathered} (x_1,y_1) \\ (x_2,y_2) \end{gathered}[/tex]And the segment is divided internally in the ratio:
[tex]m\colon n_{}[/tex]In this case, you can identify that:
[tex]\begin{gathered} x_2=x_P=-3 \\ \\ x=-1 \\ \\ m=1 \\ \\ n=3 \end{gathered}[/tex]Then, you can substitute values and solve for:
[tex]x_1[/tex]Which, in this case, is the x-coordinate of Point Q.
Then, you get:
[tex]\begin{gathered} -1=\frac{(1)_{}(-3)_{}-(3)x_1}{1-3} \\ \\ -1=\frac{-3_{}-3x_1}{-2} \end{gathered}[/tex][tex]undefined[/tex]