A unit vector has a module of 1.
We can calculate the coordinates of a unit vector in the direction of an specific vector by dividing the coordinates of that vector by the module.
Then, first we will calculate the module of the vector:
[tex]\begin{gathered} |r|=\sqrt[]{x^2+y^2} \\ |r|=\sqrt[]{(-2)^2+(-1)^2} \\ |r|=\sqrt[]{4+1} \\ |r|=\sqrt[]{5} \end{gathered}[/tex]We then can write the unit vector as:
[tex]r=(-\frac{2}{\sqrt[]{5}},-\frac{1}{\sqrt[]{5}})=(-\frac{2\sqrt[]{5}}{5},-\frac{\sqrt[]{5}}{5})[/tex]Answer: (-2√5/5, -√5/5)