SOLUTION
Let the ounces for the 18% mixture be x.
So, the ounces for the 9% mixture will be
[tex]36-x[/tex]So, this means that
[tex]x(\frac{18}{100})+(36-x)(\frac{9}{100})=36(\frac{15}{100})[/tex]Solving this, we have
[tex]\begin{gathered} x(\frac{18}{100})+(36-x)(\frac{9}{100})=36(\frac{15}{100}) \\ 0.18x+(36-x)0.09=36(0.15) \\ 0.18x+3.24-0.09x=5.4 \\ 0.18x-0.09x=5.4-3.24 \\ 0.09x=2.16 \\ x=\frac{2.16}{0.09} \\ x=24 \end{gathered}[/tex]So, the for 18%, we have 24 ounces.
For 9%, we have
[tex]\begin{gathered} 36-24= \\ =12 \end{gathered}[/tex]Hence for 9%, we have 12 ounces