The n-th natural frequency for a medium with length L fixed at one end and free at the other end is given by the condition:
[tex]L=\frac{2n-1}{4}\lambda_n[/tex]Where λ_n is the n-th natural wavelength. On the other hand, every transverse wave satisfies the following:
[tex]v=\lambda f[/tex]Where v is the speed of the wave, and f is the frequency of the wave.
Then:
[tex]f_n=\frac{v}{\lambda_n}[/tex]Isolate 1/λ_n from the first equation:
[tex]\frac{1}{\lambda_n}=\frac{2n-1}{4L}[/tex]Then:
[tex]f_n=\frac{2n-1}{4L}\times v[/tex]Replace L=0.681m, v=25.5m and n=1,2,3 to fin the first three natural frequencies of the antenna:
[tex]\begin{gathered} f_1=\frac{2(1)-1}{4\times(0.681m)}\times25.5\frac{m}{s}\approx9.36Hz \\ \\ f_2=\frac{2(2)-1}{4\times(0.681m)}\times25.5\frac{m}{s}\approx28.1Hz \\ \\ f_3=\frac{2(3)-1}{4\times(0.681m)}\times25.5\frac{m}{s}\approx46.8Hz \end{gathered}[/tex]Therefore, the first three natural frequencies of the antenna are 9.36Hz, 28.1Hz and 46.8Hz.