Respuesta :

Given ratios of the side lengths of a quadrilateral.

[tex]2\colon7\colon8\colon12[/tex]

Let x be the factor of the given ratios.

[tex]2x,\text{ 7x, 8x, 12x}[/tex]

The perimeter of the quadrilateral is calculated by the given formula.

[tex]\text{Perimeter = sum of all the sides of the quadrilateral}[/tex]

Now, the perimeter of the quadrilateral is

[tex]\begin{gathered} 2x+7x+8x+12x=522\text{ cm} \\ 29x\text{ = 522 cm} \\ x=\frac{522}{29}\text{ c}m \\ x=18\text{ cm} \end{gathered}[/tex]

Thus, the sides will be

[tex]\begin{gathered} 2x\colon7x\colon8x\colon12x \\ =(2\times18)\colon(7\times18)\colon(8\times18)\colon(12\times18) \\ =36\colon126\colon144\colon216 \end{gathered}[/tex]

Thus, the shortest side will be 36.

Therefore, the given options c is correct.

RELAXING NOICE
Relax