In order to find the perimeter of the given figure, use the following formula to find the distance in between the given points:
[tex]d=\sqrt[]{(y_2-y_1)^2+(x_2-x_1)^2}[/tex]where (x1,y1) and (x2,y2) are the coordinates of two points.
calculate the distance AB, BC, CA, which are the sides of the triangle:
[tex]\begin{gathered} AB=\sqrt[]{(-3-0)^2+(-4-0)^2}=\sqrt[]{9+16}=\sqrt[]{25}=5 \\ BC=\sqrt[]{(0-(-3))^2+(-9-(-4))^2}=\sqrt[]{9+25}=\sqrt[]{34} \\ CA=\sqrt[]{(0-0)^2+(0-(-9))^2}=\sqrt[]{81}=9 \end{gathered}[/tex]The perimeter of the triangle is:
P = AB + BC + CA = 5 + √34 + 9 = 14 + √34 ≈ 19.8