Answer:
The equation of the line is;
[tex]y=-\frac{1}{3}x-\frac{10}{3}[/tex]Explanation:
Given that the line is perpendicular to the equation;
[tex]y=3x-6[/tex]So, the slope of the line will be the negative inverse of the slope of the equation above;
[tex]m=-\frac{1}{3}[/tex]Also, the line passes through the point;
[tex](-1,-3)[/tex]Applying the point-slope form of linear equation;
[tex]y-y_1=m(x-x_1)[/tex]Substituting the values of the slope and coordinates;
[tex]\begin{gathered} y-(-3)=-\frac{1}{3}(x-(-1)) \\ y+3=-\frac{1}{3}(x+1) \\ y+3=-\frac{1}{3}x-\frac{1}{3} \\ y=-\frac{1}{3}x-\frac{1}{3}-3 \\ y=-\frac{1}{3}x-3\frac{1}{3} \\ y=-\frac{1}{3}x-\frac{10}{3} \end{gathered}[/tex]Therefore, the equation of the line is;
[tex]y=-\frac{1}{3}x-\frac{10}{3}[/tex]