Respuesta :

Answer:

The equation of the line is;

[tex]y=-\frac{1}{3}x-\frac{10}{3}[/tex]

Explanation:

Given that the line is perpendicular to the equation;

[tex]y=3x-6[/tex]

So, the slope of the line will be the negative inverse of the slope of the equation above;

[tex]m=-\frac{1}{3}[/tex]

Also, the line passes through the point;

[tex](-1,-3)[/tex]

Applying the point-slope form of linear equation;

[tex]y-y_1=m(x-x_1)[/tex]

Substituting the values of the slope and coordinates;

[tex]\begin{gathered} y-(-3)=-\frac{1}{3}(x-(-1)) \\ y+3=-\frac{1}{3}(x+1) \\ y+3=-\frac{1}{3}x-\frac{1}{3} \\ y=-\frac{1}{3}x-\frac{1}{3}-3 \\ y=-\frac{1}{3}x-3\frac{1}{3} \\ y=-\frac{1}{3}x-\frac{10}{3} \end{gathered}[/tex]

Therefore, the equation of the line is;

[tex]y=-\frac{1}{3}x-\frac{10}{3}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico