Answer:
163
Step-by-step explanation:
0 judges - [tex]C^8_0=1[/tex] way to vote
1 judge - [tex]C^8_1=8[/tex] ways to vote
2 judges-
[tex]C^8_2=\dfrac{8!}{2!(8-2)!}=\dfrac{6!\cdot 7\cdot 8}{2\cdot 6!}=\dfrac{56}{2}=28[/tex]
ways to vote for 2 different judges
3 judges-
[tex]C^8_3=\dfrac{8!}{3!(8-3)!}=\dfrac{5!\cdot 6\cdot 7\cdot 8}{2\cdot 3\cdot 5!}=\dfrac{6\cdot 56}{6}=56[/tex]
ways to vote for 3 different judges
4 judges-
[tex]C^8_4=\dfrac{8!}{4!(8-4)!}=\dfrac{4!\cdot 5\cdot 6\cdot 7\cdot 8}{4!\cdot 4!}=\dfrac{5\cdot 6\cdot 7\cdot 8}{2\cdot 3\cdot 4}=5\cdot 7\cdot 2=70[/tex]
ways to vote for 4 different judges
In total, there are
[tex]1+8+28+56+70=163[/tex]
different ways to vote.