Write an equation that describes the following relationship: y varies inversely as the fourth power of u and when x = 2,y=7.y =

Given:
y varies inversely as the fourth power of x
For the inversely forth power of x is:
[tex]y\propto\frac{1}{x^4}[/tex]So the value of y is:
[tex]y=\frac{k}{x^4}[/tex]where,
k = constent
so the value of k is x=2 and y = 7.
[tex]\begin{gathered} y=\frac{k}{x^4} \\ 7=\frac{k}{2^4} \\ k=7\times2^4 \\ k=7\times16 \\ k=112 \end{gathered}[/tex]Then the function is:
[tex]y=\frac{112}{x^4}[/tex]