Respuesta :

we are given the following polynomial:

[tex]x^3-5x^2-2x+24=0[/tex]

we are asked to use synthetic division by:

[tex]x+2[/tex]

first we need to find the root of "x + 2":

[tex]\begin{gathered} x+2=0 \\ x=-2 \end{gathered}[/tex]

Now we do the synthetic division using the following array:

[tex]\begin{bmatrix}{1} & {-5} & {-2} \\ {\square} & {\square} & {\square} \\ {\square} & {\square} & {\square}\end{bmatrix}\begin{bmatrix}{24} & {} & {} \\ {\square} & {} & {} \\ {\square} & {} & {}\end{bmatrix}\begin{cases}-2 \\ \square \\ \square\end{cases}[/tex]

Now we lower the first coefficient and multiply it by -2 and add that to the second coefficient:

[tex]\begin{bmatrix}{1} & {-5} & {-2} \\ {\square} & {-2} & {\square} \\ {1} & {-7} & {\square}\end{bmatrix}\begin{bmatrix}{24} & {} & {} \\ {\square} & {} & {} \\ {\square} & {} & {}\end{bmatrix}\begin{cases}-2 \\ \square \\ \square\end{cases}[/tex]

Now we repeat the previous step. We multiply -7 by -2 and add that to the next coefficient:

[tex]\begin{bmatrix}{1} & {-5} & {-2} \\ {\square} & {-2} & {14} \\ {1} & {-7} & {12}\end{bmatrix}\begin{bmatrix}{24} & {} & {} \\ {\square} & {} & {} \\ {\square} & {} & {}\end{bmatrix}\begin{cases}-2 \\ \square \\ \square\end{cases}[/tex]

Now we repeat the previous step. we multiply 12 by -2 and add that to the next coefficient:

[tex]\begin{bmatrix}{1} & {-5} & {-2} \\ {\square} & {-2} & {14} \\ {1} & {-7} & {12}\end{bmatrix}\begin{bmatrix}{24} & {} & {} \\ {-24} & {} & {} \\ {0} & {} & {}\end{bmatrix}\begin{cases}-2 \\ \square \\ \square\end{cases}[/tex]

The last number we got is the residue of the division, in this case, it is 0. Now we rewrite the polynomial but we subtract 1 to the order of the polynomial:

[tex]\frac{x^3-5x^2-2x+24}{x+2}=x^2-7x+12[/tex]

RELAXING NOICE
Relax