Given:
[tex]\cos ^2x=2+2\sin x[/tex]Sol:.
[tex]\begin{gathered} \sin ^2x+\cos ^2x=1 \\ \cos ^2x=1-\sin ^2x \end{gathered}[/tex]Put the value in equation:
[tex]\begin{gathered} \cos ^2x=2+2\sin x \\ 1-\sin ^2x=2+2\sin x \\ \sin ^2x+2\sin x+2-1=0 \\ \sin ^2x+2\sin x+1=0 \\ \sin ^2x+\sin x+\sin x+1=0 \\ \sin x(\sin x+1)+1(\sin x+1)=0 \\ (\sin x+1)(\sin x+1)=0 \\ \sin x+1=0 \\ \sin x=-1 \\ x=\sin ^{-1}(-1) \\ x=\frac{3\pi}{2} \end{gathered}[/tex]