When the velocity v of an object is very​ large, the magnitude of the force due to air resistance is proportional to v squared with the force acting in opposition to the motion of the object. A shell of mass 2 kg is shot upward from the ground with an initial velocity of 600 ​m/sec. If the magnitude of the force due to air resistance is ​(0.1​)v squared​, when will the shell reach its maximum height above the​ ground? What is the maximum​ height? Assume the acceleration due to gravity to be 9.81 m divided by s squared.

Respuesta :

Answer:

Step-by-step explanation:

The model fo the shell is given by the following equation of equilibrium:

[tex]\Sigma F = -b\cdot v^{2} - m\cdot g = m\cdot \frac{dv}{dt}[/tex]

This first-order differential equation has separable variables, which are cleared herein:

[tex]\int\limits^t_{0\,s} \, dt = -\frac{m}{b} \int\limits^{0\,\frac{m}{s} }_{600\,\frac{m}{s} } {\frac{1}{ v^{2}+\frac{m}{b}\cdot g } } \, dv[/tex]

The solution of this integral is:

[tex]t = -\frac{m}{2b}\cdot \left[\tan^{-1} \left(\frac{v}{\sqrt{\frac{m\cdot g}{b} } }\right) - \tan^{-1} \left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } }\right)\right][/tex]

[tex]\tan^{-1} \left(\frac{v}{\sqrt{\frac{m\cdot g}{b} } } \right)=-\frac{2\cdot b\cdot t}{m} + \tan^{-1}\left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } } \right)[/tex]

[tex]\frac{v}{\sqrt{\frac{m\cdot g}{b} } }=\tan \left[-\frac{2\cdot b\cdot t}{m} + \tan^{-1}\left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } } \right)\right][/tex]

[tex]v = \sqrt{\frac{m\cdot g}{b} } \left [\frac{\tan \left(-\frac{2\cdot b \cdot t}{m} \right)+ \left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } } \right)}{1 - \left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } } \right)\cdot \tan \left(-\frac{2\cdot b \cdot t}{m} \right) }\right][/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico