Answer:
Step-by-step explanation:
The model fo the shell is given by the following equation of equilibrium:
[tex]\Sigma F = -b\cdot v^{2} - m\cdot g = m\cdot \frac{dv}{dt}[/tex]
This first-order differential equation has separable variables, which are cleared herein:
[tex]\int\limits^t_{0\,s} \, dt = -\frac{m}{b} \int\limits^{0\,\frac{m}{s} }_{600\,\frac{m}{s} } {\frac{1}{ v^{2}+\frac{m}{b}\cdot g } } \, dv[/tex]
The solution of this integral is:
[tex]t = -\frac{m}{2b}\cdot \left[\tan^{-1} \left(\frac{v}{\sqrt{\frac{m\cdot g}{b} } }\right) - \tan^{-1} \left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } }\right)\right][/tex]
[tex]\tan^{-1} \left(\frac{v}{\sqrt{\frac{m\cdot g}{b} } } \right)=-\frac{2\cdot b\cdot t}{m} + \tan^{-1}\left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } } \right)[/tex]
[tex]\frac{v}{\sqrt{\frac{m\cdot g}{b} } }=\tan \left[-\frac{2\cdot b\cdot t}{m} + \tan^{-1}\left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } } \right)\right][/tex]
[tex]v = \sqrt{\frac{m\cdot g}{b} } \left [\frac{\tan \left(-\frac{2\cdot b \cdot t}{m} \right)+ \left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } } \right)}{1 - \left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } } \right)\cdot \tan \left(-\frac{2\cdot b \cdot t}{m} \right) }\right][/tex]