Solution:
Given that Sarah thinks;
[tex]2x+3=\frac{x}{2}+\frac{3}{4}[/tex]ANSWER: The two expressions are not equivalent because;
[tex]\frac{x}{2}+\frac{3}{4}=\frac{1}{4}(2x+3)[/tex]That is, 1/4 of the expression on the left side is on the right side.
Another Method
Let x =2, then substitute;
[tex]\begin{gathered} 2x+3=2(2)+3 \\ \\ 2x+3=4+3 \\ \\ 2x+3=7 \end{gathered}[/tex]Then, substitute in the second expression too;
[tex]\begin{gathered} \frac{x}{2}+\frac{3}{4}=\frac{2}{2}+\frac{3}{4} \\ \\ \frac{x}{2}+\frac{3}{4}=1+\frac{3}{4} \\ \\ \frac{x}{2}+\frac{3}{4}=\frac{7}{4} \end{gathered}[/tex]Since, the answers are not the same, then, the expressions are not equivalent.