Respuesta :

Given:

The radius of the Ferris wheel is 9.5 m.

The wheel rotates fully once every 10 seconds.

Aim:

We need to find the equation that represents the height of a rider with respect to time.

Explanation:

The form of sinusoidal eqaution is

[tex]y=A\text{ }\cos \text{(}B(x-C))D[/tex][tex]A=\frac{\text{maximum}-\text{minimum}}{2}[/tex]

The height from the ground to the bottom of the Ferris wheel is zero.

The maximum height is 9.5+9.5 =19 m.

The minimum is 0 m.

Substitute maximum =19 and minimum =0 in equation A.

[tex]A=\frac{19-0}{2}=9.5[/tex][tex]B=\frac{2\pi}{P\text{eriod}}[/tex]

Substitute period = 10 seconds in the equation.

[tex]B=\frac{2\pi}{10}=\frac{\pi}{5}[/tex][tex]D=\frac{Maximum+Minimum}{2}[/tex]

Substitute maximum =19 and minimum =0 in equation D.

[tex]D=\frac{19+0_{}}{2}=9.5m[/tex]

Substitute know values in the equation, we get

[tex]y=0.5\cos \text{(}\frac{\pi}{5}(x-C))+9.5[/tex]

Set C=0 in the equation, we get

[tex]y=9.5\cos \text{(}\frac{\pi}{5}x)+_{}9.5[/tex]

The graph of the eqaution is

The value of A should be negative.

The equation is of the form

[tex]y=-9.5\cos \text{(}\frac{\pi}{5}x)+_{}9.5[/tex]

where y represents the height from the bottom of the wheel to the rider and x represents the time taken.

The x-intercepta are (10,0), (20,0) ,(30, 0 ) and so on.

The y-intecept is (0,0).

The amplitude is the exact value of A.

[tex]|A|=|9.5|=9.5[/tex]

The period of the function is

[tex]B=\frac{\pi}{5}[/tex]

The amplitude of the given equation is 9.5.

Ver imagen AnaleyahV60263
Ver imagen AnaleyahV60263
RELAXING NOICE
Relax