see the figure below to better understand the problem
step 1
In the right triangle ABC
we have that
[tex]\begin{gathered} tan(32^o)=\frac{h}{(640+1950+x)} \\ \\ h=(2590+x)tan(32^o)\text{ ----> equation 1} \end{gathered}[/tex]
step 2
In the right triangle DBC
we have that
[tex]\begin{gathered} tan(49^o)=\frac{h}{(640+x)} \\ \\ h=(640+x)tan(49^o)\text{ ----> equation 2} \end{gathered}[/tex]
step 3
Equate equation 1 and equation 2 and solve for x
[tex]\begin{gathered} (2590+x)tan(32^o)=(640+x)tan(49^o) \\ 2590tan32^o+xtan32^o=640tan49^o+xtan49^o \\ x[tan49^o-tan32^o]=2590tan32^o-640tan49^o \\ x=\frac{2590tan32^o-640tan49}{[tan49^o-tan32^o]} \end{gathered}[/tex]
The value of x is equal to
x=1,678.74 meters
Find out the value of h
[tex]\begin{gathered} h=(640+1678.74)tan(49^o) \\ h=2,667.40\text{ m} \end{gathered}[/tex]