[tex]Answer:\ -55.102^0F\leq t^0\leq 595.958^0F[/tex]
Step-by-step explanation:
[tex]\displaystyle\\C^0=\frac{5}{9} (F^0-32^0)\\[/tex]
Let's multiply both parts of the equation by 9/5:
[tex]\displaystyle\\\frac{9}{5} C^0=F^0-32^0\\\\\frac{9}{5} C^0+32^0=F^0-32^0+32^0\\\\\frac{9}{5} C^0+32^0=F^0\\\\Thus,\\\\F^0=1.8C^0+32^0[/tex]
[tex]t=-48.39^0C\\Hence,\\t^0(F)=1.8(-48.39^0)+32^0\\t^0(F)=-87.102^0+32^0\\t^0(F)=-55.102^0[/tex]
[tex]t=313,31^0C\\Hence,\\t^0(F)=1.8(313,31^0)+32^0\\t^0(F)=563.958^0+32^0\\t^0(F)=595.958^0[/tex]
[tex]Thus,\\-55.102^0F\leq t^0\leq 595.958^0F[/tex]