What is the slope of y = 6 ^ x when x=2?
The formula for the slope is________for h close to 0 (but not equal 0)

The best estimate for the slope is_____

Respuesta :

[tex]{ \qquad\qquad\huge\underline{{\sf Answer}}} [/tex]

Here we go ~

[tex]\qquad \sf  \dashrightarrow \: f(x)= {6}^{x} [/tex]

we need to find f'(2) = ??

[tex]\qquad \sf  \dashrightarrow \: f {}^{ \prime} (x) = \displaystyle \sf \lim_{h \to0} \: \: \dfrac{f(x + h) - f(x)}{h} [/tex]

[tex]\qquad \sf  \dashrightarrow \: f {}^{ \prime} (x) = \displaystyle \sf \lim_{h \to0} \: \: \dfrac{6 {}^{x + h} - 6 {}^{x} }{h} [/tex]

[tex]\qquad \sf  \dashrightarrow \: f {}^{ \prime} (x) = \displaystyle \sf \lim_{h \to0} \: \: \dfrac{6 {}^{x + h} - 6 {}^{x} }{h} [/tex]

[tex]\qquad \sf  \dashrightarrow \: f {}^{ \prime} (x) = \displaystyle \sf \lim_{h \to0} \: \: \dfrac{6 {}^{x }( 6 {}^{h} - 1)}{h} [/tex]

[tex]\qquad \sf  \dashrightarrow \: f {}^{ \prime} (x) =\: 6 {}^{x} \: log_{e}(6) [/tex]

Now, plug in 2 for x ~

[tex]\qquad \sf  \dashrightarrow \: f {}^{ \prime} (2) =\: 6 {}^{2} \sdot log_{e}(6) [/tex]

[tex]\qquad \sf  \dashrightarrow \: f {}^{ \prime} (2) =\: 36 \sdot (1.79)[/tex]

[tex]\qquad \sf  \dashrightarrow \: f {}^{ \prime} (2) =64.44[/tex]

Otras preguntas

ACCESS MORE