Respuesta :
Answer:
Range: [tex]\:f\left(x\right)\ge \:-\frac{68}{11}[/tex]
Interval notation [tex][-\frac{68}{11},\:\infty \:)[/tex]
Step-by-step explanation:
I got a little confused with the x - 1/2x^2 term and I am taking to to be:
[tex]x\:-\frac{1}{2}x^2[/tex] . If this is incorrect please mention the correct term in your comment and I will edit this post. Or you can re-post the question
We have
[tex]f\left(x\right)=6x^2+x\:-\frac{1}{2}x^2+\:x\:-\:6[/tex]
Simplify by grouping like terms:
[tex]=-\frac{1}{2}x^2+6x^2+x+x-6[/tex]
[tex]= \frac{1}{2}x^2+6x^2+2x-6[/tex]
Add similar elements
[tex]-\frac{1}{2}x^2+6x^2[/tex][tex]= -\frac{1x^2}{2}+\frac{12x^2}{2} = \frac{11x^2}{2}[/tex]
So the original function expression becomes
[tex]y=\frac{11}{2}x^2+2x-6[/tex]
This is the equation of a parabola which in standard form is [tex]ax^2 + bx + c[/tex]
Here
[tex]a=\dfrac{11}{2},\:b=2,\:c=-6[/tex]
We can compute the vertex of this parabola using the fact that the x, y coordinates of the vertex are given by
[tex]x_v =-\dfrac{b}{2a}[/tex]
Plugging in values for b and a give us
[tex]x_v =-\dfrac{b}{2a} = -\dfrac{2}{2\left(\dfrac{11}{2}\right)} =-\dfrac{2}{11}[/tex]
Plugging in this value of [tex]x_v[/tex] into the parabola equation will give the value for [tex]y_v[/tex] which is the function value at the vertex
Plug in [tex]x_v = -\frac{2}{11}[/tex] t find the [tex]y_v[/tex] value:
[tex]y_v=\dfrac{11\left(-\dfrac{2}{11}\right)^2}{2}+2\left(-\dfrac{2}{11}\right)-6[/tex]
Simplify
[tex]\dfrac{11\left(-\dfrac{2}{11}\right)^2}{2} =\dfrac{2}{11}[/tex]
[tex]2\left(-\dfrac{2}{11}\right) = -\dfrac{4}{11}[/tex]
Combining the terms we get
[tex]y_v =[/tex] [tex]\dfrac{2}{11}-\dfrac{4}{11}-6[/tex] [tex]= -\dfrac{68}{11}[/tex]
[tex]\textsf{Therefore the parabola vertex is at }[/tex] [tex]\left(-\dfrac{2}{11},\:-\dfrac{68}{11}\right)[/tex]
For a parabola of the form [tex]ax^2 + bx + c[/tex] with vertex [tex]\left(x_v,\:y_v\right)[/tex]
[tex]\circ \;\mathrm{If}\:a < 0\:\mathrm{the\:range\:is}\:f\left(x\right)\le \:y_v[/tex]
[tex]\circ \;\mathrm{If}\:a > 0\:\mathrm{the\:range\:is}\:f\left(x\right)\ge \:y_v[/tex]
Here [tex]a=\frac{11}{2}[/tex] so the range is [tex]f\left(x\right)\ge \:-\dfrac{68}{11}[/tex]
Answer range of f(x) is
[tex]f\left(x\right)\ge \:-\dfrac{68}{11}[/tex]
In interval notation it is [tex][-\frac{68}{11},\:\infty \:)[/tex]
It is much easier if you visualize it in a graph
Hope that helps
