Respuesta :

Answer:

Area of the triangle WXY = 111.8 mm²

Step-by-step explanation:

By applying Sine rule in the given triangle WXY,

[tex]\frac{\text{SinW}}{\text{XY}}=\frac{\text{SinX}}{\text{WY}}=\frac{\text{SinY}}{\text{WX}}[/tex]

Since m∠W + m∠X + m∠Y = 180°

m∠W + 26° + 130° = 180°

m∠W = 180° - 156°

m∠W = 24°

[tex]\frac{\text{Sin24}}{\text{XY}}=\frac{\text{Sin130}}{31}=\frac{\text{Sin26}}{\text{WX}}[/tex]

[tex]\frac{\text{Sin24}}{\text{XY}}=\frac{\text{Sin130}}{31}[/tex]

XY = [tex]\frac{31\times (\text{Sin24})}{\text{Sin130}}[/tex]

XY = 16.4597

     ≈ 16.4597 mm

Area of the triangle = [tex]\frac{1}{2}(\text{XY})(\text{WY})\text{SinY}[/tex]

                                 = [tex]\frac{1}{2}(16.4597)(31)\text{Sin26}[/tex]

                                 = 111.83 mm²

                                 ≈ 111.8 mm²

Therefore, area of the triangle WXY = 111.8 mm²