Respuesta :

If the initial value problem is [tex]y^{11} -8y^{1} -15y=0[/tex] and [tex]y^{1}(0) =1[/tex],y(0)=0 then y(t)=[tex](e^{3t} -e^{5t} )/2[/tex].

Given the initial value problem be   [tex]y^{11} -8y^{1} -15y=0[/tex]and  [tex]y^{1}(0) =1[/tex],y(0)=0.

We are required to find the solution of the given initial value problem.

Laplace transform is an integral transformation that converts a function of a real variable to a function of a complex variable.

Take laplace on the DE, we get

[tex]s^{2}-sY(0)-y^{i}(0)-8[sY(s)-y(0)-15Y(s)]=0[/tex]

[tex]s^{2}Y(s)-s(0)-1-8{sY(s)-0)}+15Y(s)=0[/tex]

(Putting the values given in question)

Y(s)=([tex]s^{2} -8s+15)-1=0[/tex]

Y(s)=1/([tex]s^{2} -8s+15[/tex])

Simplifying the above:

=1/([tex]s^{2} -5s-3s+15)[/tex]

=1/[s(s-5)-3(s-5)]

=1/2 [1/(s-3)-1/(s-5)]

Taking inverse of the above we get,

y(t)=[tex](e^{3t} -e^{5t} )/2[/tex]

Hence if the initial value problem is [tex]y^{11} -8y^{1} -15y=0[/tex] and [tex]y^{1}(0) =1[/tex],y(0)=0 then y(t)=[tex](e^{3t} -e^{5t} )/2[/tex].

Learn more about laplace transform at https://brainly.com/question/17062586

#SPJ1