Respuesta :

The range of the function across the domain is {18, 2, -6}

The range of the function

The function is given as:

f(x) = -2x + 12

The domain is given as:

{-3, 5, 9}

So, we have:

f(-3) = -2*-3 + 12 = 18

f(5) = -2*5 + 12 = 2

f(9) = -2*9 + 12 = -6

Hence, the range of the function across the domain is {18, 2, -6}

The value of the function

The function is

f(x) = 3x - 11

To calculate f(4), we have:

f(4) = 3 * 4 - 11

Evaluate

f(4) = 1

Hence, the value of f(4) is 1

The value of the function

The function of the graph is given as:

w(x)

To calculate w(2), we check the corresponding point on the graph where x = 2

From the graph, we have:

w(2) = 5

Hence, the value of w(2) is 5

Read more about domain and range at:

https://brainly.com/question/1632425

#SPJ1

Answer:

1.  f(4) = 1

2.  range: {18, 2, -6}

3.  w(2) = 5

Step-by-step explanation:

Question 1

[tex]\textsf{Given}: \quad f(x)=3x-11[/tex]

To find f(4) substitute x = 4 into the given function:

[tex]\begin{aligned}\implies f(4) & = 3(4)-11\\& = 12-11\\& = 1\end{aligned}[/tex]

Question 2

Domain: set of all possible input values (x-values)

Range: set of all possible output values (y-values)

[tex]\textsf{Given}: \quad b(x)=-2x+12[/tex]

To find the range of the given function for the domain {-3, 5, 9} simply input these values of x into the function:

[tex]\implies b(-3)=-2(-3)+12=18[/tex]

[tex]\implies b(5)=-2(5)+12=2[/tex]

[tex]\implies b(9)=-2(9)+12=-6[/tex]

Therefore, the range of the given function is {18, 2, -6}.

Question 3

Given:  The graph of function w(x)

To find w(2) simply find the y-value of the point on the graph where x = 2:

  • Find x = 2 on the x-axis.  
  • Trace vertically until you meet the line.  
  • Trace horizontally to the y-axis to find the corresponding value of y.

Therefore, w(2) = 5

ACCESS MORE