Answer:
1. f(4) = 1
2. range: {18, 2, -6}
3. w(2) = 5
Step-by-step explanation:
Question 1
[tex]\textsf{Given}: \quad f(x)=3x-11[/tex]
To find f(4) substitute x = 4 into the given function:
[tex]\begin{aligned}\implies f(4) & = 3(4)-11\\& = 12-11\\& = 1\end{aligned}[/tex]
Question 2
Domain: set of all possible input values (x-values)
Range: set of all possible output values (y-values)
[tex]\textsf{Given}: \quad b(x)=-2x+12[/tex]
To find the range of the given function for the domain {-3, 5, 9} simply input these values of x into the function:
[tex]\implies b(-3)=-2(-3)+12=18[/tex]
[tex]\implies b(5)=-2(5)+12=2[/tex]
[tex]\implies b(9)=-2(9)+12=-6[/tex]
Therefore, the range of the given function is {18, 2, -6}.
Question 3
Given: The graph of function w(x)
To find w(2) simply find the y-value of the point on the graph where x = 2:
- Find x = 2 on the x-axis.
- Trace vertically until you meet the line.
- Trace horizontally to the y-axis to find the corresponding value of y.
Therefore, w(2) = 5