Answer:
7/4
Step-by-step explanation:
[tex] \displaystyle\frac{2 + \sqrt{ - 3} }{2} ( \frac{2 - \sqrt{ - 3} }{2} )~~~~~~ [/tex]
Evaluate.
Solution:
Rewrite it as,
- [tex] \displaystyle\frac{2 + \sqrt{ - 1 } \sqrt{ 3} }{2} ( \frac{2 - \sqrt{ - 1} \sqrt{3} }{2} )[/tex]
- [tex] \displaystyle\frac{2 + i\sqrt{ 3} }{2} ( \frac{2 - i\sqrt{ 3} }{2} )~~~~~~ [/tex]
Multiplying them,
- [tex] \displaystyle\frac{(2 + i\sqrt{ 3})\times(2 - i \sqrt{3}) }{2 \times 2} [/tex]
- [tex]\displaystyle\frac{(2 + i\sqrt{ 3})\times(2 - i \sqrt{3}) }{4} [/tex]
Applying Distributive property,
- [tex]\displaystyle\frac{2(2 + i\sqrt{ 3}) + \: i \sqrt{3} (2 - i \sqrt{3}) }{4} [/tex]
- [tex] \cfrac{2 \times 2 + 2( - i \sqrt{3} ) + i \sqrt{3}(2 - i \sqrt{3} ) }{4} [/tex]
- [tex] \cfrac{2 \times 2 + 2( - i \sqrt{3}) + i \sqrt{3} \times 2 + i \sqrt{3} ( - i \sqrt{3}) }{4} [/tex]
Combining each terms,
- [tex] \cfrac{4 - 2i \sqrt{3} + 2i \sqrt{3} + 3}{4} [/tex]
- [tex] \cfrac{ - 2i \sqrt{3} + 2i \sqrt{3} + 7 }{4} [/tex]
- [tex] \boxed{\cfrac{ 7}{4} }[/tex]
Last Choice is accurate.