Answer:
(-3±√61)÷2
Step-by-step explanation:
First we expand the brackets to give us :
x²+5x-14 = -1 +2x
Now we make this into the quadratic format (x²+ax+b=0) by subtract -1 and 2x from both sides :
x²+3x-13 = 0
This quadratic cannot be factorized so we must use the quadratic formula :
x = [tex]\frac{-b+\sqrt{b^{2} -4ac} }{2a}[/tex] or x = [tex]\frac{-b-\sqrt{b^{2} -4ac} }{2a}[/tex]
a = 1 , b = 3 , c = -13
Now we simplify as much as possible by first substituting values known :
x = [tex]\frac{-3+\sqrt{3^{2} -4(1)(-13)} }{2(1)}[/tex] or x = [tex]\frac{-3-\sqrt{3^{2} -4(1)(-13)} }{2(1)}[/tex]
Now we evaluate the exponent :
x = [tex]\frac{-3+\sqrt{9 -4(1)(-13)} }{2(1)}[/tex] or x = [tex]\frac{-3-\sqrt{9 -4(1)(-13)} }{2(1)}[/tex]
Now we multiply the numbers :
x = [tex]\frac{-3+\sqrt{9 +52 } }{2(1)}[/tex] or x = [tex]\frac{-3-\sqrt{9 +52 } }{2(1)}[/tex]
Now we add the numbers :
x = [tex]\frac{-3+\sqrt{61} }{2(1)}[/tex] or x = [tex]\frac{-3-\sqrt{61} }{2(1)}[/tex]
Now we multiply the denominator:
x = [tex]\frac{-3+\sqrt{61} }{2}[/tex] or x = [tex]\frac{-3-\sqrt{61} }{2}[/tex]
So our final answer is (-3±√61)÷2
Hope this helped and 5 stars, a heart and brainliest please