Respuesta :

Answer:

[tex]27^{\frac{1}{3}} \quad 125^{\frac{2}{3}} \quad 9^{\frac{3}{2}}[/tex]

Step-by-step explanation:

Rewrite 9 as 3²:

[tex]\implies 9^{\frac{3}{2}}=\left(3^2\right)^{\frac{3}{2}}[/tex]

[tex]\textsf{Apply exponent rule} \quad (a^b)^c=a^{bc}:[/tex]

[tex]\implies 3^{(2 \cdot \frac{3}{2})}=3^3[/tex]

Therefore:

[tex]\implies 3^3= 3 \cdot 3 \cdot 3=27[/tex]

---------------------------------------------------------

Rewrite 27 as 3³:

[tex]\implies 27^{\frac{1}{3}}=\left(3^3\right)^{\frac{1}{3}}[/tex]

[tex]\textsf{Apply exponent rule} \quad (a^b)^c=a^{bc}:[/tex]

[tex]\implies 3^{(3 \cdot \frac{1}{3})}=3^1[/tex]

Therefore:

[tex]\implies 3^1=3[/tex]

---------------------------------------------------------

Rewrite 125 as 5³:

[tex]\implies 125^{\frac{2}{3}}=\left(5^3\right)^{\frac{2}{3}}[/tex]

[tex]\textsf{Apply exponent rule} \quad (a^b)^c=a^{bc}:[/tex]

[tex]\implies 5^{(3 \cdot \frac{2}{3})}=5^2[/tex]

Therefore:

[tex]\implies 5^2=5 \cdot 5=25[/tex]

---------------------------------------------------------

Solution

In order, from smallest to largest:

[tex]27^{\frac{1}{3}} \quad 125^{\frac{2}{3}} \quad 9^{\frac{3}{2}}[/tex]

ACCESS MORE
EDU ACCESS