What is the solution to the given inequality? 1/2-1/4x>-1/4

Answer:
x ≤ 3
Step-by-step explanation:
[tex]\dfrac{1}{2}-\dfrac{1}{4}x \geq -\dfrac{1}{4}[/tex]
Subtract 1/2 from both sides:
[tex]\implies \dfrac{1}{2}-\dfrac{1}{4}x-\dfrac{1}{2} \geq -\dfrac{1}{4}-\dfrac{1}{2}[/tex]
[tex]\implies -\dfrac{1}{4}x \geq -\dfrac{3}{4}[/tex]
Multiply both sides by 4:
[tex]\implies -\dfrac{1}{4}x \cdot 4 \geq -\dfrac{3}{4} \cdot 4[/tex]
[tex]\implies -x \geq -3[/tex]
Divide both sides by -1 (remembering to flip the sign):
[tex]\implies \dfrac{-x}{-1} \geq \dfrac{-3}{-1}[/tex]
[tex]\implies x \leq 3[/tex]