Respuesta :
Answer:
x = 36.9°
Given:
opposite side: 9
adjacent side: 12
angle: x
Using tane rule:
[tex]\sf tan(x) = \dfrac{opposite}{adjacent}[/tex]
Solve:
[tex]\sf tan(x) = \dfrac{9}{12}[/tex]
[tex]\sf x = tan^{-1}(\dfrac{9}{12})[/tex]
[tex]\sf x = 36.87[/tex]
[tex]\sf x = 36.9[/tex]
[tex]\qquad\qquad\huge\underline{{\sf Answer}}[/tex]
Let's solve ~
since the given triangle is an right angled triangle we can use Trigonometric ratios here :
[tex]\qquad \sf \dashrightarrow \: \tan(x) = \dfrac{9}{12} [/tex]
[tex]\qquad \sf \dashrightarrow \: \tan(x) = \dfrac{3}{4} [/tex]
[tex]\qquad \sf \dashrightarrow \: x= tan { }^{ - 1} \bigg( \dfrac{3}{4} \bigg)[/tex]
[tex]\qquad \sf \dashrightarrow \:x \approx37 \degree[/tex]