Respuesta :

Answer:

x = 36.9°

Given:

opposite side: 9

adjacent side: 12

angle: x

Using tane rule:

[tex]\sf tan(x) = \dfrac{opposite}{adjacent}[/tex]

Solve:

[tex]\sf tan(x) = \dfrac{9}{12}[/tex]

[tex]\sf x = tan^{-1}(\dfrac{9}{12})[/tex]

[tex]\sf x = 36.87[/tex]

[tex]\sf x = 36.9[/tex]

[tex]\qquad\qquad\huge\underline{{\sf Answer}}[/tex]

Let's solve ~

since the given triangle is an right angled triangle we can use Trigonometric ratios here :

[tex]\qquad \sf  \dashrightarrow \: \tan(x) = \dfrac{9}{12} [/tex]

[tex]\qquad \sf  \dashrightarrow \: \tan(x) = \dfrac{3}{4} [/tex]

[tex]\qquad \sf  \dashrightarrow \: x= tan { }^{ - 1} \bigg( \dfrac{3}{4} \bigg)[/tex]

[tex]\qquad \sf  \dashrightarrow \:x \approx37 \degree[/tex]