Respuesta :
Answer:
(x+4)² + (y+9)² = 100
Step-by-step explanation:
We want to find the equation of a circle with a radius of length 10 and a center at (-4, -9).
general equation of circle : (x-h)² + (y-k)² = r²
where (h,k) is at center and r = radius
the center is at (-4,-9) so h = -4 and k = -9 and the circle has a radius of 10 so r = 10
so we have (x-h)² + (y-k)² = r²
h = -4 , k = -9 and r = 10
(x-(-4))² + (y-(-9))² = 10²
==> apply double negative sign rule and remove parenthesis for -(-4) and -(-9)
(x+4)² + (y+9)² = 10²
==> simplify exponent
(x+4)² + (y+9)² = 100
and we are done!
Answer:
Option D
Step-by-step explanation:
Given:
- Radius = 10 units
- Center point = (h, k) = (-4, -9)
∴ x coordinate of center point: (h, k) ⇒ (-4, -9)
∴ y coordinate of center point: (h, k) ⇒ (-4, -9)
Equation of circle formula:
- ⇒ (x - h)² + (y - k)² = r²
Substitute the radius in the formula;
- ⇒ (x - h)² + (y - k)² = r²
- ⇒ (x - h)² + (y - k)² = (10)²
Substitute the x and y coordinate in the formula;
- ⇒ [x - (-4)]² + [y - (-9)]² = (10)² [x coordinate (h): -4; y coordinate (k): -9]
- ⇒ [x + 4]² + [y + 9]² = 100 (Option D)
Therefore, Option D is correct.