What is the following sum?


3 b squared (RootIndex 3 StartRoot 54 a EndRoot) + 3 (RootIndex 3 StartRoot 2 a b Superscript 6 Baseline EndRoot)

6 b squared (RootIndex 3 StartRoot 2 a EndRoot)

12 b squared (RootIndex 3 StartRoot 2 a EndRoot

6 b squared (RootIndex 6 StartRoot 2 a EndRoot)

12 b squared (RootIndex 6 StartRoot 2 a EndRoot)

Respuesta :

Answer: Choice B

[tex]12b^2\sqrt[3]{2a}[/tex]

In word form, this is 12 b squared (RootIndex 3 StartRoot 2 a EndRoot

Or you could say 12b^2 times the cube root of 2a

========================================================

Work Shown:

[tex]3b^2\sqrt[3]{54a}+3\sqrt[3]{2ab^6}\\\\3b^2\sqrt[3]{27*2a}+3\sqrt[3]{b^6*2a}\\\\3b^2\sqrt[3]{(3)^3*2a}+3\sqrt[3]{(b^2)^3*2a}\\\\3b^2\sqrt[3]{(3)^3}*\sqrt[3]{2a}+3\sqrt[3]{(b^2)^3}*\sqrt[3]{2a}\\\\3b^2*3*\sqrt[3]{2a}+3*b^2*\sqrt[3]{2a}\\\\9b^2\sqrt[3]{2a}+3b^2\sqrt[3]{2a}\\\\(9b^2+3b^2)\sqrt[3]{2a}\\\\\boldsymbol{12b^2\sqrt[3]{2a}}\\\\[/tex]

The idea here is that we break the cube roots into smaller pieces, so we pull out perfect cubes when factoring.