Respuesta :
Answer:
14[tex]w^{8}[/tex] + 63[tex]w^{4}[/tex]
Step-by-step explanation:
7w³ (2[tex]w^{5}[/tex] + 9w) ← multiply each term in the parenthesis by 7w³
= 14[tex]w^{8}[/tex] + 63[tex]w^{4}[/tex]
[ using rule of exponents
[tex]a^{m}[/tex] × [tex]a^{n}[/tex] = [tex]a^{(m+n)}[/tex] ]
Answer:
7w⁴ (2w⁴ + 9)
Step-by-step explanation:
Given
- 7w³ (2w⁵ + 9w)
Let's simplify.
- Using the distributive property, 7w³ is distributed to 2w⁵ and 9w
- 7w³ * 2w⁵ + 7w³ * 9w
- 14w⁸ + 63w⁴
- The common factor of the two terms is : 7w⁴
- ⇒ 7w⁴ (2w⁴ + 9)