Respuesta :
Using separation of variables, it is found that the solution to the initial value problem is of y(x) = x² + 2.
What is separation of variables?
In separation of variables, we place all the factors of y on one side of the equation with dy, all the factors of x on the other side with dx, and integrate both sides.
In this problem, the differential equation is given by:
[tex]\frac{dy}{dx} = 2x[/tex]
Then, applying separation of variables:
[tex]dy = 2x dx[/tex]
[tex]\int dy = \int 2x dx[/tex]
[tex]y = x^2 + K[/tex]
Since y(0) = 2, we have that the constant of integration is K = 2, and the solution is:
y(x) = x² + 2.
More can be learned about separation of variables at https://brainly.com/question/14318343
The differential equation is y(x) = x² + 2.
What is the differential equation?
Differential Equations In Mathematics, a differential equation is an equation that contains one or more functions with their derivatives.
The given equation is;
[tex]\rm \dfrac{dy}{dx}=2x[/tex]
Applying the variable separation method;
[tex]\rm \dfrac{dy}{dx}=2x\\\\\int\limits \, dy=\int\limits\, 2x. dx\\\\y = 2 \times \dfrac{x^{1+1}}{1+1} +c\\\\y = 2 \times \dfrac{x^{2}}{2} +c\\\\y = x^2+c[/tex]
The value of c when y( 0 ) = 2 is c =2.
Hence, the required differential equation is y(x) = x² + 2.
More can be learned about the differential equation at;
brainly.com/question/14318343
#SPJ4