Step-by-step explanation:
[tex] \quad \twoheadrightarrow\sf {cos \; \theta = \dfrac{Base}{Hypotenuse} } \\ [/tex]
Hence, base = 2 units and hypotenuse = 3 units.
[tex] \quad \twoheadrightarrow\sf { H^2 = B^2 + P^2} \\ [/tex]
[tex] \quad \twoheadrightarrow\sf { P^2 = H^2 - B^2} \\ [/tex]
[tex] \quad \twoheadrightarrow\sf { P^2 = (3)^2 - (2)^2} \\ [/tex]
[tex] \quad \twoheadrightarrow\sf { P^2 = 9- 4} \\ [/tex]
[tex] \quad \twoheadrightarrow\bf { P = \sqrt{5}} \\ [/tex]
Now, we know that :
[tex] \quad \twoheadrightarrow\sf {cosec \; \theta = \dfrac{Hypotenuse}{Perpendicular} } \\ [/tex]
[tex] \quad \twoheadrightarrow\bf{cosec \; \theta = \dfrac{3}{\sqrt{5}} } \\ [/tex]
Therefore, the required answer is 3/√5.