Respuesta :

Answer:

64

Step-by-step explanation:

cube D: 1/4cm × 1/4cm × 1/4cm = 1/64cm³

cube A: 1cm × 1cm × 1cm = 1cm³

cube A ÷ cube D: 1cm³ ÷ 1/64cm³= 64

Answer: 64 Cube D's

Explanation:

What we know:

  • Cube A has side measurements of 1 cm
  • Cube D has side measurements of 1/4 cm
  • The formula for the volume of a cube is V = l*w*h

How to solve:

    By calculating the volumes of both cubes, we can figure out the maximum amount of Cube D's we can fit in Cube A.

    Volume can be calculated by V = l*w*h, where V represents volume in units cubed (u^3), l is length in units, w is width in units, and h is height in units. Our unit is cm- centimeters. Our formula will look like this:

V cm^3 = lcm * wcm * hcm

Process:

Volume of Cube A

Set up equation                                                     V = l*w*h

Substitute                                                               V = 1 * 1 * 1

Simplify                                                                   V = 1^3

Solution                                                                  V = 1 cm^3

Volume of Cube D

Set up equation                                                     V = l*w*h

Substitute                                                               V = (1/4)*(1/4)*(1/4)

Simplify                                                                   V = (1/4)^3

Solve                                                                       V = 0.015625 cm^3

Fitting the Cubes

Where V represents the volume of Cube A, d represents the volume of Cube D, and x represents the number of times Cube D can fit inside of Cube A.

Set up equation                                                     V = xd

Substitute                                                                1 = 0.015625x

Change units                                           1,000,000 = 15,625x

Isolate x                                                      /15625      /15625

Solution                                                                 64 = x

Answer: 64 Cube D's

Check:

If we multiply Cube D's volume (0.015625 cm^3) by 64, it should equal the volume of Cube A (1 cm^3). Let's test it:

64(0.015625) = 1

1 = 1

Therefore, Cube D can fit into Cube A 64 times.

RELAXING NOICE
Relax