Respuesta :

Answer:

i)  Using log law:  [tex]\log_aa=1[/tex]

[tex]\implies \log_55+1=1+1=2[/tex]

ii) [tex]\log \left(\dfrac{15}{8}\right)+4 \log 2-\log 3[/tex]

Using log law [tex]a \log b=\log b^a[/tex]:

[tex]\implies \log \left(\dfrac{15}{8}\right)+\log 2^4-\log 3[/tex]

[tex]\implies \log \left(\dfrac{15}{8}\right)+\log 16-\log 3[/tex]

Using log law [tex]\log a-\log b=\log (\frac{a}{b})[/tex]:

[tex]\implies \log \left(\dfrac{15}{8}\right)+\log\left(\dfrac{16}{3}\right)[/tex]

Using log law  [tex]\log a+\log b=\log(ab)[/tex]:

[tex]\implies \log \left(\dfrac{15}{8}\cdot \dfrac{16}{3}\right)[/tex]

[tex]\implies \log 10[/tex]

Using log law:  [tex]\log_aa=1[/tex]

[tex]\implies \log_{10} 10=1[/tex]

iii) Take log of base 10:

[tex]\log_{10}(\sqrt{8.357}\times0.895^2)[/tex]

[tex]\implies \dfrac12\log_{10}(8.357)+2\log_{10}(0.895)[/tex]

Log tables

The characteristic of the logarithm of a number is the exponent of 10 in its scientific notation.

The mantissa is found using the log tables and is always prefixed by a decimal point.

The row is the first two non-zero digits of the number, and the column is the 3rd digit of the number

Use the log tables to find [tex]\log_{10}(8.357)[/tex]:

8.357 = 8.357 × 10⁰

⇒ characteristic = 0

log table:  row 83, column 5 ⇒ mantissa 9217

(as there is a 4th digit) Mean difference 7 = 4

mantissa + mean difference = 9217 + 4 = 9221 ⇒ 0.9221

characteristic + mantissa = 0 + 0.9221 = 0.9221

Therefore, [tex]\log_{10}(8.357)=0.9221[/tex]

Use the log tables to find [tex]\log_{10}(0.895)[/tex]:

[tex]0.895 = 8.95\times 10^{-1}[/tex]

⇒ characteristic = -1

log table: row 89, column 5 ⇒ mantissa 9518⇒ 0.9518

characteristic  + mantissa = -1 + 0.9518= -0.0482

Therefore, [tex]\log_{10}(0.895)=-0.0482[/tex]

Therefore,

[tex]\implies \dfrac12\log_{10}(8.357)+2\log_{10}(0.895)[/tex]

[tex]\implies \dfrac12 \cdot 0.9221+2\cdot-0.0482[/tex]

[tex]\implies 0.36465[/tex]

Therefore,

[tex]\log_{10}(\sqrt{8.357}\times0.895^2)=0.36465[/tex]

Using [tex]\log_ab=c \implies a^c=b[/tex]

[tex]\implies \sqrt{8.357}\times0.895^2=10^{0.36465}[/tex]

[tex]\implies \sqrt{8.357}\times0.895^2=2.3155[/tex]

ACCESS MORE