Solve all 3 Questions. 50 Points + Brainelist

Answer:
i) Using log law: [tex]\log_aa=1[/tex]
[tex]\implies \log_55+1=1+1=2[/tex]
ii) [tex]\log \left(\dfrac{15}{8}\right)+4 \log 2-\log 3[/tex]
Using log law [tex]a \log b=\log b^a[/tex]:
[tex]\implies \log \left(\dfrac{15}{8}\right)+\log 2^4-\log 3[/tex]
[tex]\implies \log \left(\dfrac{15}{8}\right)+\log 16-\log 3[/tex]
Using log law [tex]\log a-\log b=\log (\frac{a}{b})[/tex]:
[tex]\implies \log \left(\dfrac{15}{8}\right)+\log\left(\dfrac{16}{3}\right)[/tex]
Using log law [tex]\log a+\log b=\log(ab)[/tex]:
[tex]\implies \log \left(\dfrac{15}{8}\cdot \dfrac{16}{3}\right)[/tex]
[tex]\implies \log 10[/tex]
Using log law: [tex]\log_aa=1[/tex]
[tex]\implies \log_{10} 10=1[/tex]
iii) Take log of base 10:
[tex]\log_{10}(\sqrt{8.357}\times0.895^2)[/tex]
[tex]\implies \dfrac12\log_{10}(8.357)+2\log_{10}(0.895)[/tex]
Log tables
The characteristic of the logarithm of a number is the exponent of 10 in its scientific notation.
The mantissa is found using the log tables and is always prefixed by a decimal point.
The row is the first two non-zero digits of the number, and the column is the 3rd digit of the number
Use the log tables to find [tex]\log_{10}(8.357)[/tex]:
8.357 = 8.357 × 10⁰
⇒ characteristic = 0
log table: row 83, column 5 ⇒ mantissa 9217
(as there is a 4th digit) Mean difference 7 = 4
mantissa + mean difference = 9217 + 4 = 9221 ⇒ 0.9221
characteristic + mantissa = 0 + 0.9221 = 0.9221
Therefore, [tex]\log_{10}(8.357)=0.9221[/tex]
Use the log tables to find [tex]\log_{10}(0.895)[/tex]:
[tex]0.895 = 8.95\times 10^{-1}[/tex]
⇒ characteristic = -1
log table: row 89, column 5 ⇒ mantissa 9518⇒ 0.9518
characteristic + mantissa = -1 + 0.9518= -0.0482
Therefore, [tex]\log_{10}(0.895)=-0.0482[/tex]
Therefore,
[tex]\implies \dfrac12\log_{10}(8.357)+2\log_{10}(0.895)[/tex]
[tex]\implies \dfrac12 \cdot 0.9221+2\cdot-0.0482[/tex]
[tex]\implies 0.36465[/tex]
Therefore,
[tex]\log_{10}(\sqrt{8.357}\times0.895^2)=0.36465[/tex]
Using [tex]\log_ab=c \implies a^c=b[/tex]
[tex]\implies \sqrt{8.357}\times0.895^2=10^{0.36465}[/tex]
[tex]\implies \sqrt{8.357}\times0.895^2=2.3155[/tex]