Respuesta :
when AgCl(s) ↔ Ag+(aq) + Cl-(aq)
∴ K1 = [Ag+][Cl-]
when the solubility of AgCl = 1.33 x 10^-5
∴ K1 = X1^2 = (1.33 x 10^-5)^2 = 1.77 x10^-10
by using vant's Hoff equation:
㏑(K2/K1) = - (ΔH/R)* (1/T2 - 1 / T1)
when T1= 25 + 273 = 298 K
T2 = 95 + 273 = 368 K
ΔH = 65.7Kkj/mol
R = 8.3145
by substitution:
㏑(K2 /1.77 x 10 ^-10) = (65.7 / 8.3145) * (1/368 - 1 / 298)
∴K2 = 1.76 x 10^-10
∴ K1 = [Ag+][Cl-]
when the solubility of AgCl = 1.33 x 10^-5
∴ K1 = X1^2 = (1.33 x 10^-5)^2 = 1.77 x10^-10
by using vant's Hoff equation:
㏑(K2/K1) = - (ΔH/R)* (1/T2 - 1 / T1)
when T1= 25 + 273 = 298 K
T2 = 95 + 273 = 368 K
ΔH = 65.7Kkj/mol
R = 8.3145
by substitution:
㏑(K2 /1.77 x 10 ^-10) = (65.7 / 8.3145) * (1/368 - 1 / 298)
∴K2 = 1.76 x 10^-10
The solubility of agcl(s) in water at 95°C is : 5.4 * 10⁻⁴ mol/L
Given data :
solubility of agcl(s) at 298 k ( 25°c ) = 1.33 * 10⁻⁵ mol/l
ΔH∘ of solution = 65.7 kJ/mol
Determine the solubility at 95°C
applying van't hoff equation
ln [tex](\frac{K_{2} }{k_{1} } ) =[/tex] - ΔH∘ / R * ( 1 / T₂ - 1 / T₁ ) --- ( 1 )
where : T₂ = 273 + 95 = 368 k , T₁ = 298 k
Substitute values into equation ( 1 )
ln ( Ksp / 1.7689 * 10⁻¹⁰ ) = - 65.7 * 10³ / 8.314 * ( 1 / 368 - 1 / 298 )
therefore :
( Ksp / 1.7689 * 10⁻¹⁰ ) = -7.90 * 10³ * -0.00064
= e^5.056
therefore: Ksp = 1.7689 * 10⁻¹⁰ * 156.96
= 2.776 * 10⁻⁸
Given that: Ksp = S² ( solubility )
solubility ( s ) at 95° C = 5.4 * 10⁻⁴ mol/L
= 5.4 * 10⁻⁴ mol/L
Hence we can conclude that The solubility of agcl(s) in water at 95°C is : 5.4 * 10⁻⁴ mol/L
Learn more about solubility : https://brainly.com/question/16903071