Respuesta :

[tex]\sf volume \ of \ cone = \dfrac{1}{3} \pi r^2h[/tex]     ** where "r" is radius and "h" is height **

[tex]\sf volume \ of \ cylinder= \pi r^2h[/tex]

[tex]\boxed{ \sf \tfrac{1}{3}}[/tex] as it refers to the volume of cone being 1/3 of the the volume of cylinder

Hardest, example:

given height of cone is 69 km and radius is 48 km

using the formula:

[tex]\hookrightarrow \sf volume \ of \ cone = \dfrac{1}{3} \pi (48)^2(69)[/tex]

[tex]\hookrightarrow \sf volume \ of \ cone = 52992\pi[/tex]

[tex]\hookrightarrow \sf volume \ of \ cone = 166479.3 \ km^3[/tex]

Answer:

The formula is given by

[tex]\\ \rm\rightarrowtail V=\dfrac{1}{3}\pi r^2h[/tex]

Here

  • V denotes to volume
  • r denotes to radius
  • h denotes to height