Respuesta :
[tex]\sf volume \ of \ cone = \dfrac{1}{3} \pi r^2h[/tex] ** where "r" is radius and "h" is height **
[tex]\sf volume \ of \ cylinder= \pi r^2h[/tex]
[tex]\boxed{ \sf \tfrac{1}{3}}[/tex] as it refers to the volume of cone being 1/3 of the the volume of cylinder
Hardest, example:
given height of cone is 69 km and radius is 48 km
using the formula:
[tex]\hookrightarrow \sf volume \ of \ cone = \dfrac{1}{3} \pi (48)^2(69)[/tex]
[tex]\hookrightarrow \sf volume \ of \ cone = 52992\pi[/tex]
[tex]\hookrightarrow \sf volume \ of \ cone = 166479.3 \ km^3[/tex]
Answer:
The formula is given by
[tex]\\ \rm\rightarrowtail V=\dfrac{1}{3}\pi r^2h[/tex]
Here
- V denotes to volume
- r denotes to radius
- h denotes to height