Respuesta :

Answer:

1. 3ft
2. 70.529°

Step-by-step explanation:
Question 1:

Calculated based on 2 given angles and 1 given side.

∠A = 180° - B - C = 0.5236 rad = π/6 = 30°

a = b·sin(A)/sin(B) = 3.4641 = 2[tex]\sqrt{3}[/tex]

c = b·sin(C)/sin(B) = 6.9282 = 4[tex]\sqrt{3}[/tex]

Area = [tex]\frac{ab·sin(C)}{2}[/tex] = 10.3923

Perimeter p = a + b + c = 16.3923

Semiperimeter s = [tex]\frac{a + b +c}{2}[/tex] = 8.19615

Height hα = [tex]\frac{2×Area}{a}[/tex] = 6

Height hb = [tex]\frac{2×Area}{b}[/tex] = 3.4641

Height hc = [tex]\frac{2×Area}{c}[/tex] = 3

Median ma = [tex]\sqrt{(a/2)2 + c2 - ac·cos(B)}[/tex] = 6.245

Median mb = [tex]\sqrt{(b/2)2 + a2 - ab·cos(C)}[/tex] = 4.58258

Median mc = [tex]\sqrt{(c/2)2 + b2 - bc·cos(A)}[/tex] = 3.4641

Inradius r = [tex]\frac{Area}{s}[/tex] = 1.26795

Circumradius R = [tex]\frac{a}{2sin(A)}[/tex] = 3.4641


Question 2:
Calculates b, ∠A, and ∠B based on given c, a, and ∠C.

∠A = arcsin([tex]\frac{a·sin(C)}{c}[/tex]) = 0.33984 rad = 19.471° = 19°28'16"

∠B = 180° - C - A = 1.23096 rad = 70.529° = 70°31'44"

b =  [tex]\frac{c·sin(B)}{sin(C)\\}[/tex] = 11.31371 = 8√2

Area = [tex]\frac{ab·sin(C)}{2}[/tex] = 22.62742

Perimeter p = a + b + c = 27.31371

Semiperimeter s = [tex]\frac{a + b +c}{2}[/tex] = 13.65685

Height hα = [tex]\frac{2×Area}{a}[/tex] = 11.31371

Height hb = [tex]\frac{2×Area}{b}[/tex] = 4

Height hc = [tex]\frac{2×Area}{c}[/tex] = 3.77124

Median ma = [tex]\sqrt{(a/2)2 + c2 - ac·cos(B) }[/tex]= 11.48913

Median mb = [tex]\sqrt{(b/2)2 + a2 - ab·cos(C)}[/tex] = 6.9282

Median mc = [tex]\sqrt{√(c/2)2 + b2 - bc·cos(A)}[/tex] = 6

Inradius r = [tex]\frac{Area}{s}[/tex] = 1.65685

Circumradius R = [tex]\frac{a}{2sin(A)}[/tex] = 6