Respuesta :
Answer:
b. 38 mph
Step-by-step explanation:
Here, the given equation that shows the stopping distance ( in feet ) when the truck is moving with the speed of v miles per hour,
[tex]d=0.04v^2+1.1v[/tex]
If d = 100,
[tex]100=0.04v^2+1.1v[/tex]
[tex]\implies 0.04v^2+1.1v=100[/tex]
[tex]0.04(v^2+\frac{1.1}{0.04})=100[/tex]
By adding the square of the half of the coefficient of v on both sides,
We get,
[tex]0.04(v+13.75)^2=107.563[/tex]
[tex]v+13.75=\pm \sqrt{107.563}[/tex]
[tex]v=-13.75 \pm \sqrt{107.563}[/tex]
[tex]\implies v=-13.75-\sqrt{107.563}\text{ or } v = 13.75+\sqrt{107.563}[/tex]
[tex]\implies v\approx 38.1063\text{ or } v\approx -65.6063[/tex]
Since, the speed can not be negative,
Hence, the approximate speed of truck would be 38 mph.
Option 'b' is correct.