[tex]\huge\text{Please help!}[/tex]
Simplify:
[tex]\bold{(x^{2} +8xy+16y^{2})^{\frac{1}{3} } (x+4y)}^{\frac{1}{3} }[/tex]
Due today. No spam, and thanks! :)
[tex]\bold{M^ag^ic^al\:^}[/tex]

Respuesta :

Answer:

x + 4y

Step-by-step explanation:

Hey there! First, we have to recall back laws of exponent.

[tex]\displaystyle \large{a^{\frac{m}{n}} = \sqrt[n]{a^m} }[/tex]

Now simplify the expressions in surds form.

[tex]\displaystyle \large{\sqrt[3]{x^2+8xy+16y^2} \cdot \sqrt[3]{x+4y} }[/tex]

From x²+8xy+16y², we can convert the expression to perfect square.

Perfect Square

[tex]\displaystyle \large{x^2+2xb+b^2 = (x+b)^2}[/tex]

Therefore, from the expression.

[tex]\displaystyle \large{x^2+8xy+16y^2 = (x+4y)^2}[/tex]

Thus:

[tex]\displaystyle \large{\sqrt[3]{(x+4y)^2} \cdot \sqrt[3]{x+4y}[/tex]

Because both have same surds, multiply them in one.

Surd Property I

[tex]\displaystyle \large{\sqrt[n]{x} \cdot \sqrt[n]{y} =\sqrt[n]{xy} }[/tex]

Therefore:

[tex]\displaystyle \large{\sqrt[3]{(x+4y)^2(x+4y)}[/tex]

Since both are like-terms and multiplying each other, we can apply one of exponent laws.

Exponent Laws II

[tex]\displaystyle \large{a^m \cdot a^n = a^{m+n}}[/tex]

Therefore, we have [tex]\displaystyle \large{\sqrt[3]{(x+4y)^{2+1} } \to \sqrt[3]{(x+4y)^3} }[/tex]

Simplify the expression, we have cube expression inside the cube root. Therefore, we simplify as x+4y as we cancel cube and cube root.

Let me know if you have any questions through comments!

[tex]\bold{x + 4y}[/tex]

Explanation :-

[tex]{(x^{2} +8xy+16y^{2})^{\frac{1}{3} } (x+4y)}^{\frac{1}{3} }[/tex]

Rewriting it into the expression of [tex]a^{2} + 2ab + {b}^{2} [/tex],

[tex]x^{2} + 2x \times 4y + (4y)^{2})^{\frac{1}{3} }(x + 4y)^{ \frac{1}{3} }[/tex]

[tex] = > ((x + 4y)^{2})^{ \frac{1}{3} }(x + 4y)^{ \frac{1}{3} }[/tex]

Now multiplying the fractions as,

[tex] = > ((x + 4y))^{ \frac{2}{3} }(x + 4y)^{ \frac{1}{3} }[/tex]

Now as the bases of the fractions are same, we can multiply directly,

[tex] = > (x + 4y)^{ \frac{2}{3} + \frac{1}{3} }[/tex]

[tex] = > (x + 4y)^{ \frac{3}{3} }[/tex]

As when same numerator and denominator of a fraction is 1, so,

[tex] = > (x + 4y)^1[/tex]

As 1 can be neglected (since it has no specific need in the equation), so,

[tex] = > x + 4y[/tex]

Hence, the answer is [tex]\bold{x + 4y}[/tex]