Respuesta :

Answer:

[tex]m\angle C=47.07^\circ[/tex]

Step-by-step explanation:

Law of Sines

[tex]\frac{sinA}{a}=\frac{sinB}{b}=\frac{sinC}{c}[/tex]

Determine angle C given angle A and side "a"

[tex]\frac{sin(118^\circ)}{41}=\frac{sinC}{34}\\ \\34sin(118^\circ)=41sinC\\\\\frac{34sin(118^\circ)}{41}=sinC\\\\C=sin^{-1}(\frac{34sin(118^\circ)}{41})\\\\C\approx47.07^\circ[/tex]

Therefore, [tex]m\angle C=47.07^\circ[/tex]