Answer:
[tex]m\angle C=47.07^\circ[/tex]
Step-by-step explanation:
Law of Sines
[tex]\frac{sinA}{a}=\frac{sinB}{b}=\frac{sinC}{c}[/tex]
Determine angle C given angle A and side "a"
[tex]\frac{sin(118^\circ)}{41}=\frac{sinC}{34}\\ \\34sin(118^\circ)=41sinC\\\\\frac{34sin(118^\circ)}{41}=sinC\\\\C=sin^{-1}(\frac{34sin(118^\circ)}{41})\\\\C\approx47.07^\circ[/tex]
Therefore, [tex]m\angle C=47.07^\circ[/tex]