contestada

Find the inverse of each function.
1) y = log2 (3x)
2)y=log3(x-1)
3)y=-2log x
4)y=log6(3x)
5)y=log3(x+2)
6)y=log3(5^3)
7)y=6^x+5
9)y=log3 2^x
10)y=3^x -7

Respuesta :

The inverse of a function is the opposite of the function

How to determine the inverse functions

1) y = log2 (3x)

Swap the positions of x and y

[tex]x = \log_2(3y)[/tex]

Apply the exponential rule

[tex]2^x = 3y[/tex]

Make y the subject

[tex]y = \frac{2^x}3[/tex]

Hence, the inverse function is: [tex]y = \frac{2^x}3[/tex]

2) y=log3(x-1)

Swap x and y

[tex]x = \log_3(y - 1)[/tex]

Apply exponent rule

[tex]3^x = y - 1[/tex]

Make y the subject

[tex]y = 3^x + 1[/tex]

Hence, the inverse function is: [tex]y = 3^x + 1[/tex]

3) y=-2log x

Swap x and y

[tex]x=-2\log y[/tex]

Divide both sides by -2

[tex]-0.5x=\log y[/tex]

Apply exponent rule

[tex]y = 10^{-0.5x}[/tex]

Hence, the inverse function is: [tex]y = 10^{-0.5x}[/tex]

4) y=log6(3x)

Swap x and y

[tex]x = \log_6(3y)[/tex]

Apply exponent rule

[tex]3y = 6^x[/tex]

Make y the subject

[tex]y = \frac{6^x}{3}[/tex]

Hence, the inverse function is: [tex]y = \frac{6^x}{3}[/tex]

5)y=log3(x+2)

Swap x and y

[tex]x = \log_3(y + 2)[/tex]

Apply exponent rule

[tex]y + 2 = 3^x[/tex]

Make y the subject

[tex]y = 3^x - 2[/tex]

Hence, the inverse function is: [tex]y = 3^x - 2[/tex]

6) y=log3(5^3)

Swap x and y

[tex]x = \log_3(5^3)[/tex]

Hence, the inverse function is: [tex]x = \log_3(5^3)[/tex]

7) y=6^x+5

Swap x and y

[tex]x = 6^y + 5[/tex]

Subtract 5 from both sides

[tex]6^y = x - 5[/tex]

Apply logarithm

[tex]y = \log_6(x - 5)[/tex]

Hence, the inverse function is: [tex]y = \log_6(x - 5)[/tex]

9) y=log3 2^x

Swap x and y

[tex]x = \log_3(2^y)[/tex]

Apply exponent rule

[tex]2^y = 3^x[/tex]

Apply logarithm

[tex]y = \log_2(3^x)[/tex]

Hence, the inverse function is: [tex]y = \log_2(3^x)[/tex]

10) y=3^x -7

Swap x and y

[tex]x = 3^y - 7[/tex]

Add 7 to both sides

[tex]3^y = x + 7[/tex]

Apply logarithm

[tex]y = \log_3(x + 7)[/tex]

Hence, the inverse function is: [tex]y = \log_3(x + 7)[/tex]

Read more about inverse functions at:

https://brainly.com/question/14391067