Respuesta :
Answer:
- [tex]3x^2+18x-13.[/tex]
Step-by-step explanation:
Step 1:
Equation should be:
- [tex]((0-(3x*(7x-4)))+6)-(13-(2^3*3x^2))[/tex]
Step 2:
Equation should be:
- [tex]((0-3x*(7x-4))+6x)-(13-24x^2)[/tex]
Step 3:
- Factoring [tex]3x^2+18x-13[/tex]
- The first term is [tex]3x^2[/tex]. It's coefficient is 3.
- The middle term is +18x, it's coefficient is 18.
- The last term, "the constant", is -13.
Step 1:
- Multiply the coefficient of the first term by the constant 3 * -13 = -39
Step 2:
- Find two factors of -39 whose sum equals the coefficient of the middle term, which is 18 .
- -39 + 1 = -38
- -13 + 3 = -10
- -3 + 13 = 10
- -1 + 39 = 38
- Observation : No two such factors can be found !!
- Conclusion : Trinomial can not be factored
Solution:
- [tex]3x^2 + 18x - 13[/tex].
Answer:
[tex]\boxed{\tt \tt 3x^2+18x-13}[/tex]
Step-by-step explanation:
[tex]\tt -3x(7x-4)+6x-(13-24x^2)[/tex]
Apply the Distributive Property
[tex]\tt -3x\left(7x-4\right)+6x-13+24x^2[/tex]
Multiply, -3 by (7x-4):
[tex]\tt -21x^2+12x+6x-13+24x^2[/tex]
Combine like terms:
[tex]\tt (-21x^2+24x^2)+(12x+6x)-13[/tex]
[tex]\tt 3x^2+18x-13[/tex]
___________________________