Respuesta :

Answer:

  • [tex]3x^2+18x-13.[/tex]

Step-by-step explanation:

Step 1:

Equation should be:

  • [tex]((0-(3x*(7x-4)))+6)-(13-(2^3*3x^2))[/tex]

Step 2:

Equation should be:

  • [tex]((0-3x*(7x-4))+6x)-(13-24x^2)[/tex]

Step 3:

  • Factoring [tex]3x^2+18x-13[/tex]
  • The first term is [tex]3x^2[/tex]. It's coefficient is 3.
  • The middle term is +18x, it's coefficient is 18.
  • The last term, "the constant", is -13.

Step 1:

  • Multiply the coefficient of the first term by the constant   3 * -13 = -39

Step 2:

  • Find two factors of  -39  whose sum equals the coefficient of the middle term, which is 18 .
  •  -39    +    1    =    -38
  •      -13    +    3    =    -10
  •      -3    +    13    =    10
  •      -1    +    39    =    38
  • Observation : No two such factors can be found !!
  • Conclusion : Trinomial can not be factored

Solution:

  • [tex]3x^2 + 18x - 13[/tex].

Answer:

[tex]\boxed{\tt \tt 3x^2+18x-13}[/tex]

Step-by-step explanation:

[tex]\tt -3x(7x-4)+6x-(13-24x^2)[/tex]

Apply the Distributive Property

[tex]\tt -3x\left(7x-4\right)+6x-13+24x^2[/tex]

Multiply, -3 by (7x-4):

[tex]\tt -21x^2+12x+6x-13+24x^2[/tex]

Combine like terms:

[tex]\tt (-21x^2+24x^2)+(12x+6x)-13[/tex]

[tex]\tt 3x^2+18x-13[/tex]

___________________________