Respuesta :

Answer:

[tex]d =\sqrt{(x2 - x1) ^{2} + (y2 - y1) ^{2} } \\ d = \sqrt{ {(9 - 1) }^{2} + {(18 - 3)}^{2} } \\ d = \sqrt{ {8}^{2} + 15 ^{2} } \\ d = \sqrt{64 + 225 } \\ d = \sqrt{289} \\ d = 17[/tex]

Answer:

The distance between points (1,3) and (9,18) is 17.

Step-by-step explanation:

Here's the required formula to find distance between points (1,3) and (9,18) :

[tex]\star{\small{\underline{\boxed{\sf{Distance = \sqrt{\Big(x_{2} - x_{1} \Big)^{2} + \Big(y_{2} - y_{1} \Big)^{2}}}}}}}[/tex]

Here, we have provided :

[tex]\begin{gathered}\begin{gathered} \footnotesize\rm {\underline{\underline{Where}}}\begin{cases}& \sf x_2 = 9\\ & \sf x_1 = 1\\ & \sf y_2 = 18\\& \sf y_1 = 3\end{cases} \end{gathered}\end{gathered}[/tex]

Substituting all the given values in the formula to find the distance between points (1,3) and (9,18) :

[tex]\implies{\small{\sf{d = \sqrt{\Big(x_{2} - x_{1} \Big)^{2} + \Big(y_{2} - y_{1} \Big)^{2}}}}}[/tex]

[tex]\implies{\small{\sf{d = \sqrt{\Big(9 - 1\Big)^{2} + \Big(18 - 3\Big)^{2}}}}}[/tex]

[tex]\implies{\small{\sf{d = \sqrt{\Big( \: 8 \: \Big)^{2} + \Big( \: 15 \: \Big)^{2}}}}}[/tex]

[tex]\implies{\small{\sf{d = \sqrt{\Big( 8 \times 8\Big) + \Big( 15 \times 15\Big)}}}}[/tex]

[tex]\implies{\small{\sf{d = \sqrt{\big( \: 64 \: \big) + \big( \: 225 \: \big)}}}}[/tex]

[tex]\implies{\small{\sf{d = \sqrt{64 + 225}}}}[/tex]

[tex]\implies{\small{\sf{d = \sqrt{289}}}}[/tex]

[tex]\implies{\sf{\underline{\underline{\red{d = 17}}}}}[/tex]

Hence, the distance between points (1,3) and (9,18) is 17.

[tex]\rule{300}{2.5}[/tex]

ACCESS MORE