Answer:
The first set is a solution, the second is not.
Step-by-step explanation:
Testing by filling in the numbers into the equation:
(1, 1.5): x=1, y=1.5
⇒ 1.5 =? [tex]\frac{1}{4}[/tex] · 1 + [tex]\frac{5}{4}[/tex]
⇒ 1.5 =? [tex]\frac{1}{4}[/tex] + [tex]\frac{5}{4}[/tex]
⇒ 1.5 =? [tex]\frac{6}{4}[/tex]
⇒ 1.5 =? 1.5 ⇒ Correct: is indeed solution to the equation
(12, 4): x=12, y=4
⇒ 4 =? [tex]\frac{1}{4}[/tex] · 12 + [tex]\frac{5}{4}[/tex]
⇒ 4 =? [tex]\frac{12}{4}[/tex] + [tex]\frac{5}{4}[/tex]
⇒ 4 =? [tex]\frac{17}{4}[/tex] ⇒ Incorrect: this is not a solution for the equation