==========================================
Work Shown:
[tex]P(x) = (_n C_x)*(p)^x*(1-p)^{n-x}\\\\P(14) = (_{15} C_{14})*(0.8)^{14}*(1-0.8)^{15-14}\\\\P(14) = 15*(0.8)^{14}*(0.2)^{1}\\\\P(14) \approx 0.13194139533312 \\\\P(14) \approx \boldsymbol{0.1319} \\\\[/tex]
Side note: you can use the nCr formula to compute [tex]_{15} C_{14}[/tex]; however, it's much quicker to use the shortcut formula [tex]_{n} C_{n-1} = n[/tex]. You can also use Pascal's Triangle to find the value of [tex]_{15} C_{14}[/tex]