[tex]\qquad\qquad\quad\large{\pink{ \sf⿻Question⿻}} \\[/tex]
[tex]\\[/tex]
[tex]\qquad\quad{\textsf{Find the square root of -16.}} \\[/tex]​

Respuesta :

Answer:

Step-by-step explanation:

[tex]\sqrt{-16} =\sqrt{-1 \times 16} =\sqrt{(\iota)^2(4)^2} =\pm 4\iota[/tex]

Answer:

[tex]\sqrt{-16}=4i[/tex]

Step-by-step explanation:

An imaginary number is a non-zero real number multiplied by the imaginary unit, [tex]i[/tex].

The imaginary unit, [tex]i[/tex], is defined as the square root of -1.

To find the square root of a negative number, we can express it as:

[tex]\boxed{\sqrt{-x}=\sqrt{x} \cdot i}[/tex]

Therefore, the square root of -16 is:

[tex]\begin{aligned}\sqrt{-16}&=\sqrt{16} \cdot i\\&=\sqrt{4^2} \cdot i\\&=4 \cdot i\\&=4i\end{aligned}[/tex]