Respuesta :
Answer:
Step-by-step explanation:
[tex]\sqrt{-16} =\sqrt{-1 \times 16} =\sqrt{(\iota)^2(4)^2} =\pm 4\iota[/tex]
Answer:
[tex]\sqrt{-16}=4i[/tex]
Step-by-step explanation:
An imaginary number is a non-zero real number multiplied by the imaginary unit, [tex]i[/tex].
The imaginary unit, [tex]i[/tex], is defined as the square root of -1.
To find the square root of a negative number, we can express it as:
[tex]\boxed{\sqrt{-x}=\sqrt{x} \cdot i}[/tex]
Therefore, the square root of -16 is:
[tex]\begin{aligned}\sqrt{-16}&=\sqrt{16} \cdot i\\&=\sqrt{4^2} \cdot i\\&=4 \cdot i\\&=4i\end{aligned}[/tex]