Respuesta :
Given :-
[tex] \quad \qquad \bullet \quad \sf x = 3 [/tex]
To Find :-
[tex] \quad \leadsto \quad \sf \dfrac{3x - 5 ( 9 \times 3 )}{2}[/tex]
Solution :-
Let's Start :-
[tex] \quad \leadsto \quad \sf \dfrac{3x - 5 ( 9 \times 3 )}{2}[/tex]
Putting the respective value of x we have ;
[tex] { : \implies \quad \sf \dfrac{3\cdot 3- 5 (27 )}{2}}[/tex]
[tex] { : \implies \quad \sf \dfrac{9- 135}{2}}[/tex]
[tex] { : \implies \quad \sf - \dfrac{126}{2}}[/tex]
[tex] { : \implies \quad \bf - 61}[/tex]
[tex] \quad \qquad { \bigstar { \underline { \boxed { \pmb { \bf { \red { \underbrace { \therefore \dfrac{3x - 5 ( 9 \times 3 )}{2} = - 61}}}}}}}}{\bigstar}[/tex]
Step-by-step explanation:
Put X = 3 in 3x-5(9*3)
we get ,
= 3*3- 5(9*3)
= 27- 135
= - 108
now , divide it by 2 ,
[tex] - 108 \div 2 \\ - 54[/tex]