Respuesta :

Given :-

[tex] \quad \qquad \bullet \quad \sf x = 3 [/tex]

To Find :-

[tex] \quad \leadsto \quad \sf \dfrac{3x - 5 ( 9 \times 3 )}{2}[/tex]

Solution :-

Let's Start :-

[tex] \quad \leadsto \quad \sf \dfrac{3x - 5 ( 9 \times 3 )}{2}[/tex]

Putting the respective value of x we have ;

[tex] { : \implies \quad \sf \dfrac{3\cdot 3- 5 (27 )}{2}}[/tex]

[tex] { : \implies \quad \sf \dfrac{9- 135}{2}}[/tex]

[tex] { : \implies \quad \sf - \dfrac{126}{2}}[/tex]

[tex] { : \implies \quad \bf - 61}[/tex]

[tex] \quad \qquad { \bigstar { \underline { \boxed { \pmb { \bf { \red { \underbrace { \therefore \dfrac{3x - 5 ( 9 \times 3 )}{2} = - 61}}}}}}}}{\bigstar}[/tex]

genmad

Step-by-step explanation:

Put X = 3 in 3x-5(9*3)

we get ,

= 3*3- 5(9*3)

= 27- 135

= - 108

now , divide it by 2 ,

[tex] - 108 \div 2 \\ - 54[/tex]