We will use the sine and cosine of the sum of two angles, the sine and consine of [tex]\frac{\pi}{2}[/tex], and the relation of the tangent with the sine and cosine:
[tex]\sin (\alpha+\beta)=\sin \alpha\cdot\cos\beta + \cos\alpha\cdot\sin\beta
\cos(\alpha+\beta)=\cos\alpha\cdot\cos\beta-\sin\alpha\cdot\sin\beta[/tex]
[tex]\sin\dfrac{\pi}{2}=1,\ \cos\dfrac{\pi}{2}=0[/tex]
[tex]\tan\alpha = \dfrac{\sin\alpha}{\cos\alpha}[/tex]
If you use those identities, for [tex]\alpha=x,\ \beta=\dfrac{\pi}{2}[/tex], you get:
[tex]\sin\left(x+\dfrac{\pi}{2}\right) = \sin x\cdot\cos\dfrac{\pi}{2} + \cos x\cdot\sin\dfrac{\pi}{2} = \sin x\cdot0 + \cos x \cdot 1 = \cos x[/tex]
[tex]\cos\left(x+\dfrac{\pi}{2}\right) = \cos x \cdot \cos\dfrac{\pi}{2} - \sin x\cdot\sin\dfrac{\pi}{2} = \cos x \cdot 0 - \sin x \cdot 1 = -\sin x[/tex]
Hence:
[tex]\tan \left(x+\dfrac{\pi}{2}\right) = \dfrac{\sin\left(x+\dfrac{\pi}{2}\right)}{\cos\left(x+\dfrac{\pi}{2}\right)} = \dfrac{\cos x}{-\sin x} = -\cot x[/tex]