A composite function combines two or more function to form a new one.
The value of f(g(3)) is [tex]\mathbf{f(g(3)) = -16}[/tex]
The graph of f(x) is not given, so I will provide a general explanation.
The given parameter is:
[tex]\mathbf{g(x) = -2x - 5}[/tex]
To calculate f(g(3)), we start by calculating g(3)
So, we have:
[tex]\mathbf{g(3) = -2 \times 3 - 5}[/tex]
[tex]\mathbf{g(3) = -6 - 5}[/tex]
[tex]\mathbf{g(3) = -11}[/tex]
f(g(3)) becomes
[tex]\mathbf{f(g(3)) = f(-11)}[/tex]
The next step is to check the graph of f(x) for the value of f(-11).
Using the attached graph,
[tex]\mathbf{f(-11) = -16}[/tex]
Hence:
[tex]\mathbf{f(g(3)) = -16}[/tex]
Read more about composite functions at:
https://brainly.com/question/10830110