Respuesta :

...

Explanation:

.................

Ver imagen namjunglimbu
Ver imagen namjunglimbu
msm555

Answer:

Solution given:

t=[tex]2π \sqrt{\frac{m}{g}}[/tex]

where

t=time and it's dimension is [T¹]

m=mass and its dimension is [M¹]

dimension of constant term is nothing.

t=[tex]2π \sqrt{\frac{m}{g}}[/tex]

squaring on both side

we get

t²=4π²*[tex]\frac{m}{k}[/tex]

since 4π² has no dimension

Dimension of t²=[T²]

Dimension of m=[M¹]

Dimension of k=?

By using

The principle of homogeneity of dimension we get

Dimension of =dimension of [tex]\frac{m}{k}[/tex]

[T²]=[tex]\frac{[M¹]}{K}[/tex]

doing crisscrossed multiplication

K=[tex]\frac{[M¹]}{[T²]}[/tex]

dimension of k is[tex] [M¹T^{-2}] [/tex]or [tex][M¹L^0T^{-2}][/tex]

since length is absent

ACCESS MORE